SIMD-Based Implementations of Sieving in Integer-Factoring Algorithms
نویسندگان
چکیده
The best known integer-factoring algorithms consist of two stages: the sieving stage and the linear-algebra stage. Efficient parallel implementations of both these stages have been reported in the literature. All these implementations are based on multi-core or distributed parallelization. In this paper, we experimentally demonstrate that SIMD instructions available in many modern processors can lead to additional speedup in the computation of each core. We handle the sieving stage of the two fastest known factoring algorithms (NFSM and MPQSM), and are able to achieve 15–40% speedup over non-SIMD implementations. Although the sieving stage offers many tantalizing possibilities of data parallelism, exploiting these possibilities to get practical advantages is a challenging task. Indeed, to the best of our knowledge, no similar SIMD-based implementation of sieving seems to have been reported in the literature.
منابع مشابه
Use of SIMD-based data parallelism to speed up sieving in integer-factoring algorithms
Many cryptographic protocols derive their security from the apparent computational intractability of the integer factorization problem. Currently, the best known integer-factoring algorithms run in subexponential time. Efficient parallel implementations of these algorithms constitute an important area of practical research. Most reported implementations use multi-core and/or distributed paralle...
متن کاملOn the Cost of Factoring RSA-1024
As many cryptographic schemes rely on the hardness of integer factorization, exploration of the concrete costs of factoring large integers is of considerable interest. Most research has focused on PC-based implementations of factoring algorithms; these have successfully factored 530-bit integers, but practically cannot scale much further. Recent works have placed the bottleneck at the sieving s...
متن کاملEfficient Modular Arithmetic for SIMD Devices
This paper describes several new improvements of modular arithmetic and how to exploit them in order to gain more efficient implementations of commonly used algorithms, especially in cryptographic applications. We further present a new record for modular multiplications per second on a single desktop computer as well as a new record for the ECM factoring algorithm. This new results allow buildi...
متن کاملA Dedicated Sieving Hardware
We describe a hardware device for supporting the sieving step in integer factoring algorithms like the quadratic sieve or the number field sieve. In analogy to Bernstein’s proposal for speeding up the linear algebra step, we rely on a mesh of very simple processing units. Manufacturing the device at moderate cost with current hardware technology on standard wafers with 200 mm or 300 mm diameter...
متن کاملFactoring Integers Using SIMD Sieves
We describe our single-instruction multiple data (SIMD) implementation of the multiple polynomial quadratic sieve integer factoring algorithm. On a 16K MasPar massively parallel computer, our implementation can factor 100 digit integers in a few days. Its most notable success was the factorization of the 110-digit RSA-challenge number, which took about a month.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013